Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Cells ; 12(13)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37443798

RESUMEN

The deletion of phenylalanine at position 508 (F508del) produces a misfolded CFTR protein that is retained in the ER and degraded. The lack of normal CFTR channel activity is associated with chronic infection and inflammation which are the primary causes of declining lung function in Cystic Fibrosis (CF) patients. Moreover, LPS-dependent oxidative stress downregulates CFTR function in airway epithelial cells. Olive leaf extract (OLE) is used in traditional medicine for its effects, including anti-oxidant and anti-inflammatory ones. We found that OLE decreased the intracellular ROS levels in a dose-response manner in CFBE cells. Moreover, OLE attenuates the inflammatory response to LPS or IL-1ß/TNFα stimulation, mimicking the infection and inflammatory status of CF patients, in CFBE and primary nasal epithelial (HNE) cells. Furthermore, we demonstrated that OLE restored the LPS-mediated decrease of TrikfaftaTM-dependent F508del-CFTR function in CFBE and HNE cultures. These findings provide strong evidence of OLE to prevent redox imbalance and inflammation that can cause chronic lung damage by enhancing the antioxidant activity and attenuating inflammation in CF airway epithelial cells. Additionally, OLE might be used in combination with CFTR modulators therapy to improve their efficacy in CF patients.


Asunto(s)
Fibrosis Quística , Humanos , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Antioxidantes/farmacología , Lipopolisacáridos/farmacología , Inflamación/tratamiento farmacológico
2.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36902237

RESUMEN

The lung is an accomplished organ for gas exchanges and directly faces the external environment, consequently exposing its large epithelial surface. It is also the putative determinant organ for inducing potent immune responses, holding both innate and adaptive immune cells. The maintenance of lung homeostasis requires a crucial balance between inflammation and anti-inflammation factors, and perturbations of this stability are frequently associated with progressive and fatal respiratory diseases. Several data demonstrate the involvement of the insulin-like growth factor (IGF) system and their binding proteins (IGFBPs) in pulmonary growth, as they are specifically expressed in different lung compartments. As we will discuss extensively in the text, IGFs and IGFBPs are implicated in normal pulmonary development but also in the pathogenesis of various airway diseases and lung tumors. Among the known IGFBPs, IGFBP-6 shows an emerging role as a mediator of airway inflammation and tumor-suppressing activity in different lung tumors. In this review, we assess the current state of IGFBP-6's multiple roles in respiratory diseases, focusing on its function in the inflammation and fibrosis in respiratory tissues, together with its role in controlling different types of lung cancer.


Asunto(s)
Proteína 6 de Unión a Factor de Crecimiento Similar a la Insulina , Neoplasias Pulmonares , Fibrosis Pulmonar , Humanos , Proteína 6 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor II del Crecimiento Similar a la Insulina/metabolismo , Pulmón/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología
3.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36835024

RESUMEN

The pathomechanisms of preeclampsia (PE), a complication of late pregnancy characterized by hypertension and proteinuria, and due to improper placentation, are not well known. Mesenchymal stem cells derived from the amniotic membrane (AMSCs) may play a role in PE pathogenesis as placental homeostasis regulators. PLACenta-specific protein 1 (PLAC1) is a transmembrane antigen involved in trophoblast proliferation that is found to be associated with cancer progression. We studied PLAC1 in human AMSCs obtained from control subjects (n = 4) and PE patients (n = 7), measuring the levels of mRNA expression (RT-PCR) and secreted protein (ELISA on conditioned medium). Lower levels of PLAC1 mRNA expression were observed in PE AMSCs as compared with Caco2 cells (positive controls), but not in non-PE AMSCs. PLAC1 antigen was detectable in conditioned medium obtained from PE AMSCs, whereas it was undetectable in that obtained from non-PE AMSCs. Our data suggest that abnormal shedding of PLAC1 from AMSC plasma membranes, likely by metalloproteinases, may contribute to trophoblast proliferation, supporting its role in the oncogenic theory of PE.


Asunto(s)
Células Madre Mesenquimatosas , Preeclampsia , Proteínas Gestacionales , Femenino , Humanos , Embarazo , Amnios/metabolismo , Células CACO-2 , Medios de Cultivo Condicionados , Células Madre Mesenquimatosas/metabolismo , Placenta/metabolismo , Preeclampsia/metabolismo , ARN Mensajero/metabolismo , Carcinogénesis/metabolismo , Proteínas Gestacionales/metabolismo
4.
J Pers Med ; 12(10)2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-36294716

RESUMEN

BACKGROUND: Cystic fibrosis (CF) airway epithelium shows alterations in repair following damage. In vitro studies showed that lumacaftor/ivacaftor (Orkambi) may favor airway epithelial integrity in CF patients. Our aim was to evaluate the effect of the novel triple combination elexacaftor/tezacaftor/ivacaftor (ETI) on wound repair in CF airway epithelial cells. METHODS: A tip-based scratch assay was employed to study wound repair in monolayers of CFBE14o- cells overexpressing the F508del mutation. ETI was added during wound repair. RESULTS: ETI efficiently rescued CFTR F508del maturation and activity, accelerated wound closure and increased wound healing rates of the injured CF cell monolayers. CONCLUSIONS: The triple corrector/potentiator combination ETI shows promise in ameliorating wound healing of the airway epithelium in F508del patients.

5.
J Pers Med ; 12(9)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36143206

RESUMEN

Previous studies reported the influence of cis variants in F508del cystic fibrosis (CF) patients in their responses to CFTR modulators. The current study is a prospective, observational study involving three patients with CF and pancreatic insufficiency, carrying a complex allele including F508del with A238V, I1027T, or L467F. We report clinical data before and after 4 weeks of treatment with tezacaftor (TEZ)/ivacaftor (IVA), elexacaftor (ELX)/TEZ/IVA, and lumacaftor (LUM)/IVA for patients with complex alleles A238V, I1027T, and L467F, respectively. The 50-year-old patient bearing F508del;A238V/D1152H showed a normal sweat test (13 mEq/L) and improvements in forced expiratory volume in the first second (FEV1) (+7 points), body mass index (BMI) (+0.85), and respiratory CF Questionnaire-Revised (CFQ-R) domain (+22.2 points). The 12-year-old patient bearing F508del;I1027T/R709X showed an improvement in a sweat test (-40 mEq/l), FEV1 (+9 points) and the respiratory CFQ-R domain (+16.7 points). No changes in outcomes were observed for the 6-year-old patient F508del;L467F/F508del. Our data highlight that the reported variants do not modify the phenotypic expression of F508del. Searching L467F is crucial in CF patients with F508del nonresponsive to ELX/TEZ/IVA. Further data are needed to evaluate the clinical effect of these variants after a longer follow up.

6.
Sci Rep ; 12(1): 14362, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35999223

RESUMEN

In this in vitro study, we test our hypothesis that Broccoli-derived vesicles (BDVs), combining the anti-oxidant properties of their components and the advantages of their structure, can influence the metabolic activity of different cancer cell lines. BDVs were isolated from homogenized fresh broccoli (Brassica oleracea L.) using a sucrose gradient ultracentrifugation method and were characterized in terms of physical properties, such as particle size, morphology, and surface charge by transmission electron microscopy (TEM) and laser doppler electrophoresis (LDE). Glucosinolates content was assessed by RPLC-ESI-MS analysis. Three different human cancer cell lines (colorectal adenocarcinoma Caco-2, lung adenocarcinoma NCI-H441 and neuroblastoma SHSY5Y) were evaluated for metabolic activity by the MTT assay, uptake by fluorescence and confocal microscopy, and anti-oxidant activity by a fluorimetric assay detecting intracellular reactive oxygen species (ROS). Three bands were obtained with average size measured by TEM based size distribution analysis of 52 nm (Band 1), 70 nm (Band 2), and 82 nm (Band 3). Glucobrassicin, glucoraphanin and neoglucobrassicin were found mostly concentrated in Band 1. BDVs affected the metabolic activity of different cancer cell lines in a dose dependent manner compared with untreated cells. Overall, Band 2 and 3 were more toxic than Band 1 irrespective of the cell lines. BDVs were taken up by cells in a dose- and time-dependent manner. Pre-incubation of cells with BDVs resulted in a significant decrease in ROS production in Caco-2 and NCI-H441 stimulated with hydrogen peroxide and SHSY5Y treated with 6-hydroxydopamine, with all three Bands. Our findings open to the possibility to find a novel "green" approach for cancer treatment, focused on using vesicles from broccoli, although a more in-depth characterization of bioactive molecules is warranted.


Asunto(s)
Brassica , Antioxidantes/metabolismo , Antioxidantes/farmacología , Brassica/metabolismo , Células CACO-2 , Glucosinolatos/química , Humanos , Especies Reactivas de Oxígeno/metabolismo
7.
J Pers Med ; 12(8)2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-36013270

RESUMEN

The development of preclinical in vitro models has provided significant progress to the studies of cystic fibrosis (CF), a frequently fatal monogenic disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein. Numerous cell lines were generated over the last 30 years and they have been instrumental not only in enhancing the understanding of CF pathological mechanisms but also in developing therapies targeting the underlying defects in CFTR mutations with further validation in patient-derived samples. Furthermore, recent advances toward precision medicine in CF have been made possible by optimizing protocols and establishing novel assays using human bronchial, nasal and rectal tissues, and by progressing from two-dimensional monocultures to more complex three-dimensional culture platforms. These models also enable to potentially predict clinical efficacy and responsiveness to CFTR modulator therapies at an individual level. In parallel, advanced systems, such as induced pluripotent stem cells and organ-on-a-chip, continue to be developed in order to more closely recapitulate human physiology for disease modeling and drug testing. In this review, we have highlighted novel and optimized cell models that are being used in CF research to develop novel CFTR-directed therapies (or alternative therapeutic interventions) and to expand the usage of existing modulator drugs to common and rare CF-causing mutations.

8.
Eur J Pharm Biopharm ; 178: 94-104, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35926759

RESUMEN

In most chronic respiratory diseases, excessive viscous airway secretions oppose a formidable permeation barrier to drug delivery systems (DDSs), with a limit to their therapeutic efficacy for the targeting epithelium. Since mucopenetration of DDSs with slippery technology (i.e. PEGylation) has encountered a reduction in the presence of sticky and complex airway secretions, our aim was to evaluate the relevance of magnetic PEGylated Solid Lipid Nanoparticles (mSLNs) for pulling them through chronic obstructive pulmonary disease (COPD) airway secretions. Thus, COPD sputum from outpatient clinic, respiratory secretions aspirated from high (HI) and low (LO) airways of COPD patients in acute respiratory insufficiency, and porcine gastric mucus (PGM) were investigated for their permeability to mSLN particles under a magnetic field. Rheological tests and mSLN adhesion to airway epithelial cells (AECs) were also investigated. The results of mucopenetration show that mSLNs are permeable both in COPD sputum and in PGM, while HI and LO secretions are always impervious. Parallel rheological results show a different elastic property, which can be associated with different mucus mesostructures. Finally, adhesion tests confirm the role of the magnetic field in improving the interaction of SLNs with AECs. Overall, our results reveal that mesostructure is of paramount importance in determining the mucopenetration of magnetic SLNs.


Asunto(s)
Nanopartículas , Enfermedad Pulmonar Obstructiva Crónica , Animales , Compuestos Férricos , Liposomas , Moco , Nanopartículas/química , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Porcinos
10.
Front Mol Biosci ; 9: 905468, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35903151

RESUMEN

Cystic Fibrosis (CF) patients are prone to contracting bacterial lung infections with opportunistic pathogens, especially Pseudomonas aeruginosa. Prolonged P. aeruginosa infections have been linked to chronic inflammation in the CF lung, whose hallmarks are increased levels of cytokines (i.e., TNF-α, IL-1ß, IL-6) and neutrophil attraction by chemokines, like IL-8. Recently, insulin-like growth factor binding protein 6 (IGFBP-6) has been shown to play a putative role in the immune system and was found at higher levels in the sera and synovial tissue of rheumatoid arthritis patients. Moreover, it has been demonstrated that IGFBP-6 has chemoattractant properties towards cells of the innate (neutrophils, monocytes) and adaptive (T cells) immunity. However, it is not known whether IGFBP-6 expression is dysregulated in airway epithelial cells under infection/inflammatory conditions. Therefore, we first measured the basal IGFBP-6 mRNA and protein levels in bronchial epithelial cells lines (Wt and F508del-CFTR CFBE), finding they both are upregulated in F508del-CFTR CFBE cells. Interestingly, LPS and IL-1ß+TNFα treatments increased the IGFBP-6 mRNA level, that was reduced after treatment with an anti-inflammatory (Dimethyl Fumarate) in CFBE cell line and in patient-derived nasal epithelial cultures. Lastly, we demonstrated that IGFBP-6 reduced the level of pro-inflammatory cytokines in both CFBE and primary nasal epithelial cells, without affecting rescued CFTR expression and function. The addition of a neutralizing antibody to IGFBP-6 increased pro-inflammatory cytokines expression under challenge with LPS. Together, these data suggest that IGFBP-6 may play a direct role in the CF-associated inflammation.

11.
Life (Basel) ; 12(5)2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35629422

RESUMEN

Cystic fibrosis (CF) airways are affected by a deranged repair of the damaged epithelium resulting in altered regeneration and differentiation. Previously, we showed that human amniotic mesenchymal stem cells (hAMSCs) corrected base defects of CF airway epithelial cells via connexin (CX)43-intercellular gap junction formation. In this scenario, it is unknown whether hAMSCs, or fibroblasts sharing some common characteristics with MSCs, can operate a faster repair of a damaged airway epithelium. A tip-based scratch assay was employed to study wound repair in monolayers of CFBE14o- cells (CFBE, homozygous for the F508del mutation). hAMSCs were either co-cultured with CFBE cells before the wound or added to the wounded monolayers. NIH-3T3 fibroblasts (CX43+) were added to wounded cells. HeLa cells (CX43-) were used as controls. γ-irradiation was optimized to block CFBE cell proliferation. A specific siRNA was employed to downregulate CX43 expression in CFBE cells. CFBE cells showed a delayed repair as compared with wt-CFTR cells (16HBE41o-). hAMSCs enhanced the wound repair rate of wounded CFBE cell monolayers, especially when added post wounding. hAMSCs and NIH-3T3 fibroblasts, but not HeLa cells, increased wound closure of irradiated CFBE monolayers. CX43 downregulation accelerated CFBE wound repair rate without affecting cell proliferation. We conclude that hAMSCs and fibroblasts enhance the repair of a wounded CF airway epithelium, likely through a CX43-mediated mechanism mainly involving cell migration.

12.
STAR Protoc ; 3(2): 101258, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35434660

RESUMEN

We describe a protocol to identify the binding site(s) for a drug called ivacaftor that potentiates the CFTR chloride channel. We use photoaffinity probes-based on the structure of ivacaftor-to covalently modify the CFTR protein at the region that constitutes the drug binding site(s). We define the methods for photo-labeling CFTR, its membrane extraction, and enzymatic digestion using trypsin. We then describe the experimental methods to identify the modified peptides by using mass spectrometry. For complete details on the use and execution of this protocol, please refer to Laselva et al. (2021).


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Sitios de Unión , Fibrosis Quística/tratamiento farmacológico , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Humanos , Transporte Iónico , Mutación
13.
J Clin Med ; 11(5)2022 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-35268374

RESUMEN

Cystic fibrosis is a life-threatening disease that affects at least 100,000 people worldwide. It is caused by a defect in the cystic fibrosis transmembrane regulator (CFTR) gene and presently, 360 CFTR-causing mutations have been identified. Since the discovery of the CFTR gene, the expectation of developing treatments that can substantially increase the quality of life or even cure cystic fibrosis patients is growing. Yet, it is still uncertain today which developing treatments will be successful against cystic fibrosis. This study addresses this gap by assessing the opinions of over 524 cystic fibrosis researchers who participated in a global web-based survey. For most respondents, CFTR modulator therapies are the most likely to succeed in treating cystic fibrosis in the next 15 years, especially through the use of CFTR modulator combinations. Most respondents also believe that fixing or replacing the CFTR gene will lead to a cure for cystic fibrosis within 15 years, with CRISPR-Cas9 being the most likely genetic tool for this purpose.

14.
Mol Syst Biol ; 18(2): e10629, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35156780

RESUMEN

Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a chloride and bicarbonate channel in secretory epithelia with a critical role in maintaining fluid homeostasis. Mutations in CFTR are associated with Cystic Fibrosis (CF), the most common lethal autosomal recessive disorder in Caucasians. While remarkable treatment advances have been made recently in the form of modulator drugs directly rescuing CFTR dysfunction, there is still considerable scope for improvement of therapeutic effectiveness. Here, we report the application of a high-throughput screening variant of the Mammalian Membrane Two-Hybrid (MaMTH-HTS) to map the protein-protein interactions of wild-type (wt) and mutant CFTR (F508del), in an effort to better understand CF cellular effects and identify new drug targets for patient-specific treatments. Combined with functional validation in multiple disease models, we have uncovered candidate proteins with potential roles in CFTR function/CF pathophysiology, including Fibrinogen Like 2 (FGL2), which we demonstrate in patient-derived intestinal organoids has a significant effect on CFTR functional expression.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Animales , Membrana Celular/metabolismo , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrinógeno/genética , Fibrinógeno/metabolismo , Fibrinógeno/farmacología , Ensayos Analíticos de Alto Rendimiento , Humanos , Mamíferos , Mutación
15.
Curr Protoc ; 2(1): e341, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35025140

RESUMEN

Human embryonic stem cells (ES) and induced pluripotent stem cells (iPSC) are powerful tools that have the potential to generate in vitro human lung epithelial cells. However, challenges in efficiency and reproducibility remain in utilizing the cells for therapy discovery platforms. Here, we optimize our previously published protocols to efficiently generate three developmental stages of the lung model (fetal lung epithelial progenitors, fLEP; immature airway epithelial spheroid, AES; air-liquid interface culture, ALI), and demonstrate its potential for cystic fibrosis (CF) drug discovery platforms. The stepwise approach directs differentiation from hPSC to definitive endoderm, anterior ventral foregut endoderm, and fetal lung progenitor cells. The article also describes the generation of immature airway epithelial spheroids in Matrigel with epithelial cells sorted by a magnetic-activated cell sorting system, and the generation of adult-like airway epithelia through air-liquid interface conditions. We demonstrate that this optimized procedure generates remarkably higher cystic fibrosis transmembrane conductance regulator (CFTR) expression and function than our previous method, and thus is uniquely suitable for CF research applications. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: hESC/hiPSC differentiation to fetal lung progenitors Basic Protocol 2: Formation of airway epithelial spheroids Alternate Protocol 1: Cryopreservation of airway epithelial spheroids Basic Protocol 3: Differentiation and maturation in air-liquid interface culture Alternate Protocol 2: Differentiation and maturation of epithelial progenitors from airway epithelial spheroids in ALI culture.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Células Madre Pluripotentes , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Endodermo , Humanos , Pulmón , Reproducibilidad de los Resultados
16.
J Cyst Fibros ; 21(4): 630-636, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34972649

RESUMEN

BACKGROUND: Antisense oligonucleotide- based drugs for splicing modulation were recently approved for various genetic diseases with unmet need. Here we aimed to generate skipping over exon 23 of the CFTR transcript, to eliminate the W1282X nonsense mutation and avoid RNA degradation induced by the nonsense mediated mRNA decay mechanism, allowing production of partially active CFTR proteins lacking exon 23. METHODS: ∼80 ASOs were screened in 16HBEge W1282X cells. ASO candidates showing significant exon skipping were assessed for their W1282X allele selectivity and the increase of CFTR protein maturation and function. The effect of a highly potent ASO candidates was further analyzed in well differentiated primary human nasal epithelial cells, derived from a W1282X homozygous patient. RESULTS: ASO screening led to identification of several ASOs that significantly decrease the level of CFTR transcripts including exon 23. These ASOs resulted in significant levels of mature CFTR protein and together with modulators restore the channel function following free uptake into these cells. Importantly, a highly potent lead ASOs, efficiently delivered by free uptake, was able to increase the level of transcripts lacking exon 23 and restore the CFTR function in cells from a W1282X homozygote patient. CONCLUSION: The highly efficient exon 23 skipping induced by free uptake of the lead ASO and the resulting levels of mature CFTR protein exhibiting channel function in the presence of modulators, demonstrate the ASO therapeutic potential benefit for CF patients carrying the W1282X mutation with the objective to advance the lead candidate SPL23-2 to proof-of-concept clinical study.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Codón sin Sentido , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Humanos , Mutación , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/metabolismo , Oligonucleótidos Antisentido/farmacología , Empalme del ARN/genética
17.
Pulm Pharmacol Ther ; 72: 102098, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34793977

RESUMEN

The cystic fibrosis (CF) lung disease is due to the lack/dysfunction of the CF Transmembrane Conductance Regulator (CFTR), a chloride channel expressed by epithelial cells as the main regulator of ion and fluid homeostasis. More than 2000 genetic variation in the CFTR gene are known, among which those with identified pathomechanism have been divided into six mutation classes. A major advancement in the pharmacotherapy of CF has been the development of small-molecule drugs hitting the root of the disease, i.e. the altered ion and fluid transport through the airway epithelium. These drugs, called CFTR modulators, have been advanced to the clinics to treat nearly 90% of CF patients, including the CFTR potentiator ivacaftor, approved for residual function mutations (Classes III and IV), and combinations of correctors (lumacaftor, tezacaftor, elexacaftor) and ivacaftor for patients bearing at least one the F508del mutation, the most frequent mutation belonging to class II. To cover the 10% of CF patients without etiological therapies, other novel small-molecule CFTR modulators are in evaluation of their effectiveness in all the CFTR mutation classes: read-through agents for Class I, correctors, potentiators and amplifiers from different companies for Class II-V, stabilizers for Class VI. In alternative, other solute carriers, such as SLC26A9 and SLC6A14, are the focus of intensive investigation. Finally, other molecular targets are being evaluated for patients with no approved CFTR modulator therapy or as means of enhancing CFTR modulatory therapy, including small molecules forming ion channels, inhibitors of the ENaC sodium channel and potentiators of the calcium-activated chloride channel TMEM16A. This paper aims to give an up-to-date overview of old and novel CFTR modulators as well as of novel strategies based on small-molecule drugs. Further investigations in in-vivo and cell-based models as well as carrying out large prospective studies will be required to determine if novel CFTR modulators, stabilizers, amplifiers, and the ENaC inhibitors or TMEM16A potentiators will further improve the clinical outcomes in CF management.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Aminofenoles/efectos adversos , Canales de Cloruro/genética , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/uso terapéutico , Humanos , Mutación , Estudios Prospectivos
18.
Cells ; 10(12)2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-34943927

RESUMEN

Induced Pluripotent Stem Cells (iPSCs) can be differentiated into epithelial organoids that recapitulate the relevant context for CFTR and enable testing of therapies targeting Cystic Fibrosis (CF)-causing mutant proteins. However, to date, CF-iPSC-derived organoids have only been used to study pharmacological modulation of mutant CFTR channel activity and not the activity of other disease-relevant membrane protein constituents. In the current work, we describe a high-throughput, fluorescence-based assay of CFTR channel activity in iPSC-derived intestinal organoids and describe how this method can be adapted to study other apical membrane proteins. Specifically, we show how this assay can be employed to study CFTR and ENaC channels and an electrogenic acid transporter in the same iPSC-derived intestinal tissue. This phenotypic platform promises to expand CF therapy discovery to include strategies that target multiple determinants of epithelial fluid transport.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Intestinos/metabolismo , Organoides/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Animales , Diferenciación Celular , Perros , Canales Epiteliales de Sodio/metabolismo , Edición Génica , Humanos , Células de Riñón Canino Madin Darby
19.
Nat Commun ; 12(1): 6504, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34764255

RESUMEN

The derivation of mature functional cholangiocytes from human pluripotent stem cells (hPSCs) provides a model for studying the pathogenesis of cholangiopathies and for developing therapies to treat them. Current differentiation protocols are not efficient and give rise to cholangiocytes that are not fully mature, limiting their therapeutic applications. Here, we generate functional hPSC-derived cholangiocytes that display many characteristics of mature bile duct cells including high levels of cystic fibrosis transmembrane conductance regulator (CFTR) and the presence of primary cilia capable of sensing flow. With this level of maturation, these cholangiocytes are amenable for testing the efficacy of cystic fibrosis drugs and for studying the role of cilia in cholangiocyte development and function. Transplantation studies show that the mature cholangiocytes generate ductal structures in the liver of immunocompromised mice indicating that it may be possible to develop cell-based therapies to restore bile duct function in patients with biliary disease.


Asunto(s)
Enfermedades de los Conductos Biliares/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Células Epiteliales/metabolismo , Células Madre Pluripotentes/metabolismo , Diferenciación Celular/fisiología , Biología Evolutiva , Células Epiteliales/citología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes/citología
20.
Stem Cell Reports ; 16(11): 2825-2837, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34678210

RESUMEN

For those people with cystic fibrosis carrying rare CFTR mutations not responding to currently available therapies, there is an unmet need for relevant tissue models for therapy development. Here, we describe a new testing platform that employs patient-specific induced pluripotent stem cells (iPSCs) differentiated to lung progenitor cells that can be studied using a dynamic, high-throughput fluorescence-based assay of CFTR channel activity. Our proof-of-concept studies support the potential use of this platform, together with a Canadian bioresource that contains iPSC lines and matched nasal cultures from people with rare mutations, to advance patient-oriented therapy development. Interventions identified in the high-throughput, stem cell-based model and validated in primary nasal cultures from the same person have the potential to be advanced as therapies.


Asunto(s)
Diferenciación Celular/genética , Fibrosis Quística/genética , Células Madre Pluripotentes Inducidas/metabolismo , Pulmón/metabolismo , Células Madre/metabolismo , Células Cultivadas , Fibrosis Quística/metabolismo , Fibrosis Quística/patología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Perfilación de la Expresión Génica/métodos , Humanos , Pulmón/citología , Mutación , RNA-Seq/métodos , Células Madre/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...